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Abstract

Indirect magnetization transfer increases the observed nuclear Overhauser enhancement (NOE) between two protons in many

cases, leading to an underestimation of target distances. Wider distance bounds are necessary to account for this error. However,

this leads to a loss of information and may reduce the quality of the structures generated from the inter-proton distances. Although

several methods for spin diffusion correction have been published, they are often not employed to derive distance restraints. This

prompted us to write a user-friendly and CPU-efficient method to correct for spin diffusion that is fully integrated in our program

ambiguous restraints for iterative assignment (ARIA). ARIA thus allows automated iterative NOE assignment and structure cal-

culation with spin diffusion corrected distances. The method relies on numerical integration of the coupled differential equations

which govern relaxation by matrix squaring and sparse matrix techniques. We derive a correction factor for the distance restraints

from calculated NOE volumes and inter-proton distances. To evaluate the impact of our spin diffusion correction, we tested the new

calibration process extensively with data from the Pleckstrin homology (PH) domain of Mus musculus b-spectrin. By comparing

structures refined with and without spin diffusion correction, we show that spin diffusion corrected distance restraints give rise to

structures of higher quality (notably fewer NOE violations and a more regular Ramachandran map). Furthermore, spin diffusion

correction permits the use of tighter error bounds which improves the distinction between signal and noise in an automated NOE

assignment scheme.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The nuclear Overhauser enhancement (NOE) effect is
the principal experimental source for solving structures

by NMR. In an isolated rigid two-spin system, the NOE

depends on r�6, where r is the distance between two

protons. In molecules, internal motion and spin diffu-

sion complicate the conversion of NOEs into distances.

Intramolecular mobility leads to non-linear distance

averaging and to different effective correlation times for

the inter-proton vectors. Magnetization transfer via in-
direct pathways (see Fig. 1) leads to enlarged NOE in-

tensities in most cases. Thus, distances derived from
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long-range NOEs using the isolated spin pair approxi-

mation (ISPA) are often underestimated.

We present here a new algorithm to correct for spin
diffusion in molecules and discuss the algorithm and its

implementation in ARIA 1.2. To illustrate the impact of

the new spin diffusion correction, we performed several

ambiguous restraints for iterative assignment (ARIA)

calculations using the data of the Pleckstrin homology

(PH) domain of Mus musculus b-spectrin. The aim was

to assess whether the spin diffusion correction influences

the quality of the final structure ensemble, especially
when employing tighter error bounds for the distance

restraints.
1.1. Spin relaxation theory

The Solomon equations [1] in matrix form for N in-

teracting spins are:
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Fig. 1. Illustration of spin diffusion in a protein. Indirect magnetization

transfer via spins k and l influences the NOE between i and j.

J.P. Linge et al. / Journal of Magnetic Resonance 167 (2004) 334–342 335
dDMzðtÞ
dt

¼ �RDMzðtÞ; ð1Þ

in which DMz ¼ Mz �M0 is the deviation of the longi-

tudinal magnetization Mz from the equilibrium magne-
tization M0 and R is the relaxation matrix. The

relaxation matrix is an N � N matrix with auto-relaxa-

tion rate constants qi ¼ Rii and cross-relaxation rate

constants rij ¼ Rij for the exchange of magnetization.

The spectral density JijðxÞ is the Fourier cosine

transform of the vector auto-correlation function, CijðtÞ,
between two spins i and j, respectively. If overall tum-

bling of the molecule is isotropic and uncorrelated to
internal dynamics, the correlation function factors into

contributions arising from overall tumbling,

COðtÞ ¼ expf�t=scg, and internal dynamics, Cij
I ðtÞ. sc

denotes the rotation correlation time of the molecule

[1,2]. In the case of negligible internal dynamics, the

spectral density becomes:

JijðxÞ ¼ 2

Z 1

0

CijðtÞ cosðxtÞdt ¼
1

4pr6ij

sc
1þ ðxscÞ2

: ð2Þ

For a uniformly labelled molecule, the elements of the

relaxation matrix Rij are:

Rii ¼
2p
5
c4H�h

2
Xn
i6¼j

Jijð0Þ
�

þ 3JijðxH Þ þ 6Jijð2xH Þ
�

þ 2p
5

X
S

c2Hc
2
S�h

2
X
kS

JikS ðxH½ � xSÞ

þ 3JikS ðxH Þ þ 6JikS ðxH þ xSÞ� þ Rext
i ; ð3Þ

Rij ¼
2p
5
c4H�h

2
�
� Jijð0Þ þ 6Jijð2xH Þ

�
i 6¼ j; ð4Þ

where kS is a heteronuclear spin of type S, xH is the

proton frequency, and cH and cS are the gyromagnetic

ratios for H and S, respectively. The external relaxation
rate Rext

i for spin i represents interactions with other

spins in the sample. With Eq. (2), the cross-relaxation

rates Rij are a function of the distances rij and the cor-

relation time sc:
Rij ¼
1

10
c4H�h

2 1

r6ij
� sc þ

6sc
1þ ð2xHscÞ2

: ð5Þ

The knowledge of the relaxation matrix would

therefore permit direct calculation of the inter-proton

distances.
The time evolution of the intensities VijðtÞ in a two-

dimensional NOE experiment [2,3] is:

d

dt
VðtÞ ¼ �RVðtÞ: ð6Þ

The formal solution of this differential equation,

VðsmÞ ¼ expf�RsmgVð0Þ ð7Þ
allows the computation of NOE spectra at mixing time

sm from a given biomolecular structure.

For heteronuclear NOESY experiments, different
transfer efficiencies during INEPT and reverse INEPT

durations must be taken into account:

Vij ¼ Mj
z ð0Þ½expð�RsmÞ�ijFi; ð8Þ

where Fi represents the transfer efficiencies for the

INEPT and reverse INEPT processes [4]. Practically, the

relative size of Fi can be estimated from the HSQC peak,

and a volume Vij can be corrected by dividing it by the
volume of the corresponding HSQC peak [4,5].
1.2. Spin diffusion correction

Several methods exist to account for spin diffusion. In

the direct approach, one minimizes the difference be-

tween the calculated NOE intensity and the experi-

mental NOE intensity [6]. Unfortunately, the calculation

of the gradient of the NOE energy term is CPU-inten-
sive (OðN3Þ for every cross-peak). Even with the speed-

up achieved by using cut-off distances and other

approximations [7–10], these methods are still consid-

erably slower than using distance restraints.

Inversion of Eq. (7) yields spin diffusion corrected

distance restraints for standard structure calculation

[11,12]. Since the NOE matrix can only be inverted if all

of its elements are known, we have to complement the
NOE matrix elements for which there is no experimental

data available or the NOE is ambiguous (cf. IRMA [11]

and MARDIGRAS [12]). These methods are OðN 3Þ, but
need to be applied only very few times.

Numerical integration methods are the fastest means

to correct for spin diffusion. Several schemes to solve

Eq. (7) exist (see comparison in [13]). Numerical inte-

gration is also OðN3Þ. However, it is straightforward to
use sparse matrix techniques rendering numeric inte-

gration suitable for larger systems. The relaxation ma-

trix R is sparse because of the r�6 distance dependence

of the cross-relaxation rates. Only few elements of R

are significantly larger than zero. In order to speed

up the NOE calculation process, one can thus set
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cross-relaxation rates to zero if the distances are larger
than a certain cut-off.
Fig. 2. Simulation of a spin diffusion pathway by applying the distance

cut-off several times.
2. Materials and methods

2.1. Rapid calculation of an NOE matrix from a structure

ensemble

For small time increments Dt, we can approximate

the differential Eq. (6) for the NOE matrix V by a

difference equation:

Vðt þ DtÞ � VðtÞ
Dt

¼ �RVðtÞ: ð9Þ

The NOE matrix at time t þ Dt becomes:

Vðt þ DtÞ ¼ ðI� RDtÞVðtÞ ð10Þ
in which I is the unity matrix. By iteration, the spectrum

at mixing time sm can be built up from the NOE at

sm ¼ 0:

VðsmÞ ¼ ðI� RDtÞKVð0Þ; ð11Þ
where KDt ¼ sm. For K a power of 2, we can evaluate V

in only log2 K operations by repeated squaring of

I� RDt.
In case of complete relaxation during the relaxation

delay, Vð0Þ is a diagonal matrix, Vii ¼ ni, where ni is the
occupancy of the spin i (e.g., ni ¼ 3 for a methyl group;

cf. [12]).

We calculate the relaxation matrix from a structure
ensemble (e.g., from the previous iteration within an

ARIA calculation). Due to the large distances depen-

dence of its elements, most off-diagonal elements of

the relaxation matrix are close to zero. Thus, a distance

cut-off is a good approximation:

Rij ¼
ni 1

10
c4�h2 1

d6ij
� sc þ 6sc

1þ4x2s2c

� �
d̂ij 6 dcut; i 6¼ j;

0 d̂ij > dcut; i 6¼ j;

(

ð12Þ
where in our implementation we usually set the distance

d̂ij to the arithmetic ensemble average

d̂ij ¼
1

S

XS
s¼1

dij;s ð13Þ

and S denotes the number of structures in the ensemble.

If the structure ensemble had physical reality and rep-

resented slowly interchanging conformers, the correct

average for calculating the relaxation matrix would be
the hr�6i�1=6

average. We have chosen the arithmetic

average to be consistent with the standard ARIA cali-

bration, where the arithmetic average is employed to

avoid too strong weighting to the shortest distance [14].

The sparse matrix multiplication technique employed

in our algorithm sets those elements of the result matrix
to zero for which Rij ¼ 0—these matrix elements are
never calculated. In this way, the sparse matrix multi-

plication reduces the complexity from N 3 to Nq2, where
N is the total number of spins and q is the typical

number of spins within the cutoff dcut. A single squaring

step will therefore only contain the protons i and k, say,
if the corresponding relaxation matrix element Rik ele-

ment was non-zero, and so forth for all exponents. The

consequence is that the method only calculates a
non-zero NOE volume between two protons if the cor-

responding relaxation matrix element is non-zero.

However, it is exactly the property of spin diffusion that

it can produce finite NOEs through intervening ‘‘layers’’

of spins. One could either choose large cut-offs to alle-

viate this problem, or use a sparse matrix technique that

would apply a cut-off criterion on the result of each

squaring step. We have chosen a different solution,
where we try to include the most important potential

spin diffusion pathways over several atoms k; l; . . . (see
Fig. 2) in the calculation. We achieve this by modifying

the cut-off criterion in such a way that a relaxation el-

ement between two spins i and j is non-zero and in-

cluded in the calculation if an intervening atom k is close
to both of them:

Rij 6¼ 0 if 9kjd̂ik
�

6 dcut and d̂kj 6 dcut
�
; ð14Þ

similarly for a third layer involving two intermediate

protons k; l:

Rij 6¼ 0 if 9k; ljd̂ik
�

6 dcut and d̂kl 6 dcut and d̂lj 6 dcut
�

ð15Þ
and so on. This distance criterion needs only to be

applied once on the average distances calculated from

the structure ensemble. We set the number of layers

usually to three and the distance cut-off to 5�A.

2.2. Calibration of distance restraints with spin diffusion

correction in ARIA

The integration of the relaxation matrix calculation

into the ARIA procedure is straightforward: Structures
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of an iteration serve as templates for the calculation of
NOE intensities. These are then used as correction fac-

tors in the determination of target distances for the next

iteration. The necessary steps are:

1. Calculate matrix of all average inter-proton distances

d̂ij;
2. Apply the distance cut-off criterion iteratively;

3. Calculate relaxation matrix R;

4. Calculate NOEs.
We then derive an approximate correction factor for

every distance by applying a two-step calibration (sim-

ilar to [15–17]):

1. We first apply a standard calibration to the experi-

mental NOEs, using all observed peaks, to obtain

V calib
k :

V calib
k ¼

P
nðV th

n ÞP
nðV

exp
n Þ V

exp
k ; ð16Þ

where n runs over all experimental NOEs, which may
be ambiguous. In that case, V th

k is the sum of all V th
ij

contributing to the ambiguous NOE k.
2. We then use the ratio of a calculated volume and its

ISPA approximation to correct the target distance:

dexp
k ¼ V calib

k

d̂�6
k

V th
k

 !�1=6

; ð17Þ

where d̂�6
k is the sum of all d̂�6

ij contributing to NOE k.
By default, ARIA uses the calculated NOE intensities

also to determine the contribution of each assignment

possibility. We define the contribution of each possible

assignment to be proportional to the NOE intensity:

Ca / V th
a ; ð18Þ

where we normalize the contributions Ca such that:

XNd

a¼1

Ca ¼ 1; ð19Þ

where Nd is the total number of contributions for a given

frequency tolerance d and the contributions are ordered

according to size such that Ca PCb if a < b. We then

partially assign NOEs by using Eqs. (18) and (19) and

the criterion:

XNp

a¼1

Ca > p ð20Þ

in which p is the assignment cut-off and Np is the number

of contributions to the peak necessary to exceed a given

value of p. In other words, we remove the smallest
contributions depending on the choice of the cut-off

parameter p which is adjusted in each iteration. By de-

fault, p decreases from 1.0 in the first iteration to 0.8 in

the last iteration.

ARIA usually estimates the error of each distance

from the size of the distance. Since most of the target

distances will be corrected to larger values by the spin
diffusion correction, this will also increase the error es-
timate. In order to take advantage of the improved

quality of the target distances, we introduce the option

to base the error estimate on the calibrated experimental

volume:

D� ¼ Dþ ¼
X3
i¼0

�i V �1=6
calib

� �i
ð21Þ

with �2 ¼ 0:125 and �0 ¼ �1 ¼ �3 ¼ 0 by default. The net

effect of using volume-based error bounds is to shift the
whole interval ½L;U � to larger volumes but not to in-

crease the interval itself.

2.3. Structure calculations

We used ARIA 1.2 [18] for all calculations. We em-

ployed the standard simulated annealing protocol [14]

with 8000 steps during the hot stage, 10,000 and 8000
steps during first and second cooling steps, respectively.

The timestep was 3 fs for Cartesian and 27 fs for torsion

angle dynamics.

2.4. NMR data for the test calculations

The PH domain is a good test for the spin diffusion

correction: Since the number of NOEs was compara-
tively small and the convergence of the simulated

annealing protocol is low for the PH domain, the cali-

bration of the distance restraints is especially important

for the quality of the final ensemble.

We took the NOE data of a 106-residue construct

measured by Macias et al. [19,20] from PDB entry

1MPH. Two 2D NOE spectra with mixing times of 30

and 80ms recorded on a 600MHz spectrometer were
available. Exactly as in the original structure calculation

[20], we used three different NOE lists: a manually as-

signed and calibrated restraint list (containing 568 re-

straints from both spectra), a partially assigned list for

the 2D NOE spectrum with a mixing time of 30ms (658

restraints), and a partially assigned list for the 2D NOE

spectrum with a mixing time of 80ms (1643 restraints).

The manual list contained generous qualitative upper
bounds derived from visual inspection of the original 2D

spectra. Most of these restraints were redundant with

the other peak lists; some additional restraints on this

list had been derived from peak shoulders, and do not

appear on the (automatically picked) peak lists. Fur-

thermore, we employed 88 hydrogen bond restraints in

all calculations.

2.5. Overview of the performed calculations

We set up a full ARIA 1.2 run with eight iterations.

The final ensemble consisted of 100 structures. We used

a distance cut-off of 5�A for the setup of the relaxation

matrix and a correlation time of 8.5 ns. In order to
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follow spin diffusion pathways, the cut-off was applied
three times (as shown in Fig. 2). The NOE matrix was

calculated in 10 matrix squaring steps, corresponding to

1024 time increments Dt. Since both NOE spectra are

homonuclear, we did not need to apply the heteronu-

clear correction in Eq. (8).

We performed 12 calculations in total, using both

spectra for calculations 1–6 and the 80ms 2D NOE for

calculations 7–12 (cf. Table 1). Calculations 1–3 and 7–9
used wide error bounds with �2 ¼ 12:5% (cf. Eq. (21)

and [14] for the calculation of the error bounds). The

error bounds in calculations 4–6 and 10–12 were tighter,

with �2 ¼ 6:25%. The goal was to test the three cali-

bration methods:

1. Calibration without spin diffusion correction.

2. Calibration with spin diffusion correction (error esti-

mates from calculated distances).
3. Calibration with spin diffusion correction (error esti-

mates from calculated volumes).

Since spin diffusion is more prominent in experiments

with longer mixing times, the difference between the

structures calculated with and without spin diffusion

correction should be larger in calculations 7–12.

2.6. Structure validation

From the ensemble of 100 calculated structures of the

last iteration, we chose the 20 best structures regarding

total energy for structure validation. We used the pro-

gram WHATCHECK [21] to calculate Z-scores for the
Ramachandran map (RAMCHK), the packing quality

(QUACHK and NQACHK), the v1–v2 correlation

(C12CHK), and the backbone conformation (BBCCHK).
We also determined RMS Z-scores for the bond lengths

(BNDCHK), bond angles (ANGCHK), omega angles
Table 1

Overview of the PH domain calculations performed with and without

spin diffusion correction

No. Spectra Correction �2 VOL/DIST

1 PH30, PH80 No 12.5 DIST

2 PH30, PH80 Yes 12.5 DIST

3 PH30, PH80 Yes 12.5 VOL

4 PH30, PH80 No 6.25 DIST

5 PH30, PH80 Yes 6.25 DIST

6 PH30, PH80 Yes 6.25 VOL

7 PH80 No 12.5 DIST

8 PH80 Yes 12.5 DIST

9 PH80 Yes 12.5 VOL

10 PH80 No 6.25 DIST

11 PH80 Yes 6.25 DIST

12 PH80 Yes 6.25 VOL

We used the manual list in all calculations, and did not use the peak

list from the 30ms NOESY (PH30) in calculations 7–12. The second

polynomial coefficient (ERR2) was either 12.5 or 6.25%. Either the

volumes or the distances (VOL/DIST) served as reference to calculate

lower and upper bounds for the distance restraints.
(OMECHK), side chain planarity (PLNCHK), improper
dihedral angles (HNDCHK), and the inside/outside dis-

tribution (INOCHK). We also counted the number of

inter-atomic bumps (BMPCHK), unsatisfied H-bond

donors (BH2CHK), and acceptors (BA2CHK).

We also quote the content of residues with /–w-val-
ues in the most favoured, additional allowed, generously

allowed, and disallowed regions of the Ramachandran

plot [22] as determined with PROCHECK [23]. We
employed the program PROSA-II [24] to determine

mean force potentials, averaged over all residues in a

structure. We calculated the RMS differences to the

X-ray structures with CNS [25] (N, Ca, and C atoms for

the backbone or all heavy-atoms). For fitting the

structure, we used the amino acid ranges 2–11, 24–31,

34–38, 41–46, 62–65, 75–79, 85–89, and 93–104 to ex-

clude flexible parts in the structure and regions with
significant differences between the (complexed) X-ray

crystal structure and the solution NMR structure.

We validated all structures separately, and averaged

their quality indices over the ensemble of 20 structures.

The number quoted in Tables 2 and 3 are the average

values and the standard deviations over the ensemble.
3. Results and discussion

Fig. 3 shows the calibrated target distances against

distances from the X-ray structure 1BTN [26]. Calibra-

tion with the ISPA systematically underestimates target

distances. The largest distances are around 3.5�A. The

spin diffusion correction leads to a more realistic dis-

tribution of the target distances up to 5�A.
When the error estimates are determined from the

volumes, the error bounds get tighter leading to a to a

larger number of NOE violations. Many target dis-

tances are increased by the spin diffusion correction (see

Fig. 3). For distance-based error estimates, also the

error bounds become wider and the net effect is that the

upper bound is shifted towards larger values but not

the lower bound. On the other hand, when the esti-
mation of errors is based on the peak volume, the al-

lowed ranges are similar to not using spin diffusion

correction, and the effect is that both upper and lower

bound are shifted towards larger values, and that the

upper bound is shifted less than with the distance-based

error estimate.

The most important quality criterion in our study is

the number of NOE violations in the final structure
ensemble. In calculations 1–12, calibration with spin

diffusion correction systematically gave the best results.

Calculations 10–12 demonstrate the influence of the spin

diffusion correction best, with �2 ¼ 6:25% and the 80ms

NOE spectrum. Whereas we have 284.1 NOE violations

larger than 0.1�A with the ISPA, spin diffusion corrected

target distances give rise to a significantly smaller



Table 2

Quality indices for calculations 1–6 (all abbreviations are explained in Section 2.3)

1 2 3 4 5 6

WHATCHECK Z-scores
First generation packing

quality (QUACHK)

)1.3� 0.1 )2.0� 0.2 )1.6� 0.2 )0.9� 0.1 )1.5� 0.2 )1.2� 0.2

Second generation packing

quality (NQACHK)

)3.0� 0.3 )3.2� 0.3 )2.9� 0.3 )2.7� 0.3 )2.7� 0.3 )2.6� 0.3

Ramachandran plot

appearance (RAMCHK)

)4.5� 0.4 )4.4� 0.2 )4.6� 0.4 )5.3� 0.3 )4.6� 0.3 )4.5� 0.2

v1–v2 rotamer normality

(C12CHK)

)1.1� 0.4 0.3� 0.5 )0.3� 0.3 )2.7� 0.3 )1.3� 0.3 )2.2� 0.5

Backbone conformation

(BBCCHK)

)2.5� 0.6 )2.0� 0.7 )2.5� 0.6 )4.5� 0.5 )2.4� 0.7 )2.4� 0.4

WHATCHECK RMS Z-scores
Bond lengths (BNDCHK) 0.194� 0.006 0.177� 0.003 0.2� 0.003 0.468� 0.013 0.234� 0.004 0.291� 0.009

Bond angles (ANGCHK) 0.41� 0.004 0.388� 0.003 0.412� 0.003 0.628� 0.012 0.451� 0.007 0.494� 0.011

Omega angle restraints

(OMECHK)

0.11� 0.01 0.06� 0.01 0.11� 0.01 0.26� 0.01 0.17� 0.01 0.2� 0.01

Side chain planarity

(PLNCHK)

0.07� 0.01 0.06� 0.01 0.07� 0.01 0.18� 0.02 0.09� 0.01 0.11� 0.01

Improper dihedral

(HNDCHK)

0.18� 0.01 0.15� 0.0 0.18� 0.01 0.4� 0.02 0.23� 0.01 0.29� 0.01

Inside/outside (INOCHK) 0.98� 0.02 0.98� 0.02 0.99� 0.02 0.96� 0.01 1.0� 0.02 0.98� 0.02

Inter-atomic bumps

(BMPCHK)

28.5� 5.0 15.5� 4.2 28.2� 3.8 62.8� 4.1 36.7� 5.5 41.1� 5.0

Unsatisfied hydrogen donors

(BH2CHK)

15.4� 2.9 16.4� 3.5 17.9� 4.1 17.9� 3.2 16.2� 3.4 15.1� 3.0

Unsatisfied hydrogen

acceptors (BA2CHK)

0.2� 0.4 0.5� 0.6 0.4� 0.6 1.6� 1.1 0.4� 0.8 0.6� 0.8

PROCHECK results

Most favoured regions 70.7� 3.1 67.1� 3.4 69.0� 4.0 65.0� 2.3 70.3� 2.9 71.1� 3.9

Allowed regions 25.5� 2.5 28.0� 3.1 25.7� 3.3 27.6� 2.3 25.5� 1.8 24.4� 4.1

Generously allowed regions 2.0� 1.3 3.3� 1.3 3.8� 1.9 5.5� 2.0 3.0� 1.9 2.6� 1.1

Disallowed regions 1.8� 1.0 1.6� 1.0 1.5� 0.8 2.0� 1.4 1.2� 1.2 1.9� 1.1

PROSA-II mean force

energy

)1.07� 0.08 )1.11� 0.09 )1.12� 0.1 )1.19� 0.06 )1.06� 0.09 )1.1� 0.08

RMSD to 1BTN (bb) 0.82� 0.04 0.79 � 0.08 0.83� 0.07 0.86� 0.02 0.92� 0.05 0.83� 0.05

RMSD to 1BTN (all) 1.83� 0.06 1.77� 0.12 1.93� 0.11 1.71� 0.02 1.85� 0.11 1.87� 0.13

RMSD from mean structure

(bb, 2nd)

0.27� 0.03 0.34� 0.03 0.33� 0.05 0.20� 0.03 0.23� 0.03 0.20� 0.04

RMSD from mean structure

(heavy, all)

1.2� 0.1 1.3� 0.3 1.3� 0.1 1.0� 0.2 1.2� 0.07 1.3� 0.1

NOE violations> 0.3�A 1.9� 0.6 0� 0 0.7� 0.6 55.0� 3.6 6.4� 1.5 18.9� 2.6

NOE violations> 0.1�A 17.0� 2.8 2.9� 0.6 20.1� 2.7 270.1� 7.3 68.7� 3.5 140.3� 7.7
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number of NOE violations (45.1 when using error esti-

mates derived from distances, 138.3 from volumes).

Calculations 10–12 show the most prominent differ-

ences since we are using only the spectrum with

sm ¼ 80ms while applying tighter error bounds. Calcu-

lation 11 shows the best values for Ramachandran plot

appearance, v1–v2 rotamer normality, backbone con-

formation, bond lengths, bond angles, omega side chain
planarity, improper dihedral distribution, and van der

Waals clashes.

The packing quality decreases while all the other

quality parameters get better when correcting for spin
diffusion (see QUACHK results in Tables 2 and 3).

However, we cannot expect to improve packing quality

by means of spin diffusion correction. Application of the

spin diffusion correction increases the target distances.

We have often observed that slightly inconsistent (and

too short) distance restraints give a better packing

quality than completely consistent restraints. The

decreasing packing quality is therefore an artefact of the
distance bounds and the van der Waals representation

used in the calculation. It would be easy to correct

this by running a short trajectory of the protein in a

water shell [27].



Table 3

Quality indices for calculations 7–12 (all abbreviations are explained in Section 2.3)

7 8 9 10 11 12

WHATCHECK Z-scores
First generation packing

quality (QUACHK)

)1.3� 0.2 )2.2� 0.3 )1.8� 0.2 )1.0� 0.2 )1.6� 0.2 )1.5� 0.2

Second generation packing

quality (NQACHK)

)3.0� 0.2 )3.3� 0.4 )3.0� 0.4 )2.9� 0.2 )2.9� 0.2 )2.9� 0.2

Ramachandran plot

appearance (RAMCHK)

)4.8� 0.5 )4.6� 0.4 )4.2� 0.6 )5.5� 0.3 )4.4� 0.4 )4.9� 0.4

v1–v2 rotamer normality

(C12CHK)

)1.3� 0.5 0.0� 0.4 )0.2� 0.5 )2.8� 0.3 )1.1� 0.3 )2.4� 0.4

Backbone conformation

(BBCCHK)

)2.8� 0.9 )2.4� 0.8 )2.1� 0.9 )4.9� 0.7 )2.1� 0.7 )2.8� 0.5

WHATCHECK RMS Z-scores
Bond lengths (BNDCHK) 0.195� 0.009 0.177� 0.004 0.184� 0.002 0.477� 0.012 0.218� 0.005 0.288� 0.007

Bond angles (ANGCHK) 0.41� 0.006 0.39� 0.003 0.397� 0.003 0.622� 0.011 0.425� 0.006 0.5� 0.01

Omega angle restraints

(OMECHK)

0.11� 0.01 0.06� 0.01 0.08� 0.01 0.26� 0.02 0.13� 0.01 0.21� 0.01

Side chain planarity

(PLNCHK)

0.07� 0.02 0.06� 0.01 0.06� 0.01 0.16� 0.02 0.09� 0.01 0.13� 0.01

Improper dihedral

(HNDCHK)

0.18� 0.01 0.15� 0.01 0.16� 0.01 0.4� 0.01 0.21� 0.01 0.3� 0.01

Inside/outside (INOCHK) 0.97� 0.02 0.99� 0.02 1.0� 0.02 0.96� 0.01 1.0� 0.02 0.99� 0.02

Inter-atomic bumps

(BMPCHK)

27.9� 4.8 17.3� 4.6 19.0� 5.6 63.9� 4.3 27.8� 5.1 44.9� 4.0

Unsatisfied hydrogen donors

(BH2CHK)

15.8� 2.7 17.4� 3.0 17.2� 2.6 20.6� 2.8 17.4� 3.4 15.8� 3.3

Unsatisfied hydrogen

acceptors (BA2CHK)

0.4� 0.6 0.5� 0.7 0.5� 0.5 1.0� 0.8 0.5� 0.8 1.0� 0.8

PROCHECK results

Most favoured regions 67.6� 3.6 67.2� 2.8 70.0� 3.5 63.3� 3.0 68.4� 3.8 70.6� 2.5

Allowed regions 27.1� 3.2 27.0� 2.7 25.5� 3.1 29.7� 2.8 27.5� 3.8 24.2� 2.8

Generously allowed regions 3.6� 1.9 3.9� 1.7 3.1� 1.8 5.6� 1.5 3.2� 1.5 3.6� 1.9

Disallowed regions 1.7� 0.9 1.9� 0.8 1.4� 1.3 1.3� 0.7 1.0� 0.7 1.6� 1.2

PROSA-II mean force energy )1.09� 0.1 )1.03� 0.08 )0.96� 0.09 )1.16� 0.06 )1.07� 0.08 )1.06� 0.07

RMSD to 1BTN (bb) 0.85� 0.04 0.90� 0.04 0.77� 0.03 0.80� 0.06 0.84� 0.10 0.86� 0.08

RMSD to 1BTN (all) 1.79� 0.04 2.01� 0.09 1.87� 0.07 1.81 � 0.03 1.84� 0.12 1.81� 0.10

RMSD from mean structure

(bb, 2nd)

0.32� 0.03 0.41� 0.04 0.33� 0.04 0.21� 0.02 0.21� 0.03 0.23� 0.03

RMSD from mean structure

(heavy, all)

1.1� 0.1 1.5� 0.1 1.3� 0.2 1.1� 0.2 1.1� 0.1 1.3� 0.2

NOE violations> 0.3�A 1.6� 0.5 0� 0 0.3� 0.4 58.0� 1.5 3.3� 1.2 20.9� 1.6

NOE violations> 0.1�A 12.0� 1.9 1.4� 0.5 7.7� 1.4 284.1� 12.1 45.1� 1.2 138.3� 13.1
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Precision (RMSD to the average structure) and ac-

curacy (RMSD to the X-ray structure 1BTN) do not

differ greatly between the calculations. Their values are

all within a standard deviation. The inside/outside dis-

tribution (INOCHK) and the PROSA-II mean energy

force cannot distinguish between small conformational

differences.
4. Conclusions

The new algorithm for the calculation of the NOE

matrix has proven to be numerically stable and CPU-
efficient. For the PH domain, we can simulate an NOE

spectrum in 12 s on a single Athlon 1.5GHz processor.

We use the calculated NOE intensities in an automated

NOE assignment scheme in a straightforward manner.

The spin diffusion correction also works for ambiguous

NOEs. In ARIA, the size of the contribution of each

assignment possibility is proportional to the intensity of

the calculated NOE. Thus, one does not have to merge
experimental and calculated NOE matrices (as in the

methods IRMA [11] or MARDIGRAS [12]) in order to

make use of the calculated NOE intensities.

The described spin diffusion correction is suitable for

iterative automated NOE assignment. In each round of



Fig. 3. Distances D in the model structures vs calibrated distances (the sum of lower bound L and upper bound U divided by two). The distances of

the merged peak list of calculation 10 (without spin diffusion correction) are shown above, the merged peak list of calculation 11 (with spin diffusion

correction) below. The dashed lines are a least-squares fit to all data points and the diagonal.
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assignment, calibration, and structure calculation,

ARIA applies the method to derive spin diffusion cor-
rected target distances automatically. Test calculations

with the PH domain data showed strong improvements

such as less NOE violations and a more realistic rela-

tionship between the calibrated distances and the dis-

tances in the X-ray structure through the use of the spin
diffusion correction. Common quality indices such as

the Ramachandran plot show clear improvements when
applying the spin diffusion correction, except for the

packing quality. Calibration with the ISPA underesti-

mates the target distances and thus leads to a tighter

packing of the structures. We made the spin diffusion

correction available in ARIA 1.2 [18]. The method is
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thus easily accessible even for spectroscopists unexperi-
enced in structure calculation. The user only has to

provide the correlation time sc, the mixing time sm, and
the spectrometer frequency.

ARIA 1.2 comprising all the protocols used in this

study is available from our web server: www.pasteur.fr/

recherche/unites/Binfs.
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